On the short time asymptotic of the stochastic Allen-Cahn equation

نویسنده

  • Hendrik Weber
چکیده

A description of the short time behavior of solutions of the Allen-Cahn equation with a smoothened additive noise is presented. The key result is that in the sharp interface limit solutions move according to motion by mean curvature with an additional stochastic forcing. This extends a similar result of Funaki [9] in spatial dimension n = 2 to arbitrary dimensions. Resumé On étudie le comportement de la solution de l’équation de Allen-Cahn perturbée par un bruit stochastique additif et regularisé. Il est demontré que, dans la limite d’un interface singulier, les solutions évoluent selon la courbure moyenne avec un renforcement stochastique additionel. Ceci généralise un résultat de Funaki [9] pour la dimension spatial d = 2 à une dimension quelquonque.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in H^k(0

متن کامل

Finite Element Methods for the Stochastic Allen-Cahn Equation with Gradient-type Multiplicative Noise

This paper studies finite element approximations of the stochastic Allen–Cahn equation with gradient-type multiplicative noise that is white in time and correlated in space. The sharp interface limit—as the diffuse interface thickness vanishes—of the stochastic Allen–Cahn equation is formally a stochastic mean curvature flow which is described by a stochastically perturbed geometric law of the ...

متن کامل

A Finite Element Method via Noise Regularization for the Stochastic Allen-cahn Problem

We study finite element approximations of stochastic partial differential equations of Ginzburg-Landau type and the main paradigm considered in this paper is the stochastic Allen-Cahn model. We first demonstrate that the constructed stochastic finite element approximations are within an arbitrary level of tolerance from the corresponding one-dimensional stochastic partial differential equation;...

متن کامل

On the Backward Euler Approximation of the Stochastic Allen-Cahn Equation

We consider the stochastic Allen-Cahn equation perturbed by smooth additive Gaussian noise in a spatial domain with smooth boundary in dimension d ≤ 3, and study the semidiscretization in time of the equation by an implicit Euler method. We show that the method converges pathwise with a rate O(∆tγ) for any γ < 1 2 . We also prove that the scheme converges uniformly in the strong Lp-sense but wi...

متن کامل

Triviality of the 2D stochastic Allen-Cahn equation

We consider the stochastic Allen-Cahn equation driven by mollified space-time white noise. We show that, as the mollifier is removed, the solutions converge weakly to 0, independently of the initial condition. If the intensity of the noise simultaneously converges to 0 at a sufficiently fast rate, then the solutions converge to those of the deterministic equation. At the critical rate, the limi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012